Approximate Generalized Inverse Preconditioning Methods for Least Squares Problems

نویسندگان

  • Xiaoke Cui
  • Ken Hayami
چکیده

iv erative methods to solve least squares problems more efficiently. We especially focused on one kind of preconditioners, in which preconditioners are the approximate generalized inverses of the coefficient matrices of the least squares problems. We proposed two different approaches for how to construct the approximate generalized inverses of the coefficient matrices: one is based on the Minimal Residual method with the steepest descend direction, and the other is based on the Greville’s Method which is an old method developed for computing the generalized inverse based on the rank-one update. And for these two preconditioners, we also discuss how to apply them to least squares problems. Both theoretical issues and practical implementation issues about the preconditioning are discussed in this thesis. Our numerical tests showed that our methods performed competitively rank deficient ill-conditioned problems. As an example of problems from the real world, we apply our preconditioners to the linear programming problems, where many large-scale sparse least squares problems with rank deficient coefficient matrices arise. Our numerical tests showed that our methods showed more robustness than the Cholesky decomposition method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel solution of large-scale free surface viscoelastic flows via sparse approximate inverse preconditioning

Though computational techniques for two-dimensional viscoelastic free surface flows are well developed, three-dimensional flows continue to present significant computational challenges. Fully coupled free surface flow models lead to nonlinear systems whose steady states can be found via Newton’s method. Each Newton iteration requires the solution of a large, sparse linear system, for which memo...

متن کامل

Preconditioning least-squares RTM in viscoacoustic media by Q-compensated RTM

Reverse-time de-migration (RTDM) is formulated as the adjoint operator of reverse-time migration (RTM). In acoustic medium, RTM provides a good approximation to the inverse of RTDM, and can be used to iteratively invert for the reflectivity image in least-squares RTM (LSRTM). In viscoelastic medium, however, the adjoint of the RTDM operator is far from its inverse because of amplitude attenuati...

متن کامل

An Element-Based Spectrally Optimized Approximate Inverse Preconditioner for the Euler Equations

We introduce a method for constructing an element-by-element sparse approximate inverse (SAI) preconditioner designed to be effective in a massively-parallel spectral element modeling environment involving nonsymmetric systems. This new preconditioning approach is based on a spectral optimization of a low-resolution preconditioned system matrix (PSM). We show that the local preconditioning matr...

متن کامل

On the Least Squares Solution of Inverse Eigenvalue Problems

An inverse eigenvalue problem where a matrix is to be constructed from some or all of its eigenvalues may not have a real valued solution at all An approximate solution in the sense of least squares is sometimes desirable Two types of least squares problems are formulated and explored in this paper In spite of their di erent appearance the two problems are shown to be equivalent Thus one new nu...

متن کامل

Preconditioning Methods for Shift-Variant Image Reconstruction

Preconditioning methods can accelerate the convergence of gradient-based iterative methods for tomographic image reconstruction and image restoration. Circulant preconditioners have been used extensively for shiftinvariant problems. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. For inverse p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009